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Generation-1V Types

Generation-1V Reactor Systems

(from ref [11] and [http://www.world-nuclear.org/info/inf77.html])

System Coolant Neutron Core outlet Pressure Fuel Cycle Use
spectrum temp (° C) (High = 7-15
MPa)
Very high Gas (i.e. Thermal >900 High UO, pebbles Open Electricity &
temperature helium) or prism Hydrogen
reactor (VHTR)
Gas-cooled Gas (i.e. Fast ~850 High U-238 + U- Closed, on Electricity &
fast reactor helium) 235 or Pu-239 | site Hydrogen
(GFR)
Sodium-cooled Liquid Metal Fast ~550 Low U-238 & MOX | Closed Electricity
fast reactor (i.e. Na)
(SFR)
Lead-cooled Liquid Metal Fast 550-800 Low U-238 + U- Closed, Electricity &
fast reactor (i.e. Pb, Pb- 235 or Pu-239 | regional Hydrogen
(LFR) Bi)
Super critical Water Thermal/ fast 350-620 Very High uo, Open Electricity
water-cooled (Thermal) or
reactor (SCWR) Closed (Fast)
Molten salt Molten salt Thermal/ fast* | 700-800 Low UF, in salt Open or Electricity &
reactor (MSR) (fluoride salts) Closed* Hydrogen
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Generation-1V Potential

Generation-1V Reactor System Potentia(from ref [2])

Generation-1V Goal VHTR GFR SFR LFR SCWR MSR

Efficient electricity generation Very high | High High High High High

(Economics)

Flexibility: availability of high- Very high | High Low Low Low Low

temperature process heat

(Economics)

Sustainability: creation of fissile Medium/ High High High Low Medium/

material (Proliferation and Waste) low low

Sustainability: transmutation of Medium Very high | Very high | Veryhigh | Low High

waste (Waste and Proliferation)

Potential for ‘passive’ safety (Safety) | High Very low Medium/ Medium Very low Medium
low

Current technical feasibility High Medium/ High Medium Medium/ Low

(Economics and Safety) low low
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Very High Temperature Reactor

Very-High-Temperature Reactor
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Material Requirements - VHTR

 Dimensional stability under irradiation and high temperatures
» Under stress — irradiation creep or relaxation
» Without stress — swelling or growth

 Mechanical properties must be acceptable after ageing

» 50,000h operation target between major maintenance work compared to
15,000h for most current gas turbine plants

» Tensile strength

* Ductility

» Creep Resistance
* Fracture toughness
» Resilience (shock)

« Corrosion resistance or chemical compatibility between
structural materials and the coolant or process fluid
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Current Reactor Materials

e Fuel cladding
e Zirconium alloys:
e Zircaloy-2, -4, and Zr-2.5Nb

e Moderators
e Boron Carbide
 Ag-In-CD (80-15-5) alloy
* Gd,O, with UO,

e Qutside the core

« Low alloy ferritic steels
« Stainless Steels (304)

http://en.wikipedia.org/wiki/File:Nuclear_fireball.jpg
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VHTR Materials

 Fuel
» Tri-isotropic (TRISO)-layered
particles
* Pyrolytic carbon
» Silicon carbide
» Porous carbon
. UO, and UC,

 Moderator, central column,
radial reflectors, etc
* Graphite
* i.e. H-451 — medium grain,
near-isotropic, nuclear grade
e OQutside the core
* Ni-base Superalloys

» Silicon carbide fiber reinforced
silicon carbide matrix composites
(SiC/SiC)

2 June 2009 Materials Science and Engineering 395-0

VHTR
Vessel

PWR
Vessel

From ref [2]



MCCormick

Northwestern Engineering

TRISO particles

 Pyro-carbon

« Single cleavage planes - good
thermal conductivity (for
thermal neutrons)

« OQuter layer — structural strength

* Inner layer — retain fission
gasses

« SIC

Outer pyro-carbon

SiC
Fuel Kernel

Porous carbon buffer

Inner pyro-carbon

* Retain fission gases

 Porous Carbon
» Space for fission gases and CO

« UO, and UC,

« UC, can reduce CO pressure
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Graphite
* Polycrystalline e |ssues
o High degree of * Neutron irradiation induces

graphitization
* High chemical purity

e Minimize thermal neutron
absorption in the moderator

e Random bulk
orientation

 Dimensional stability under
high neutron fluxes o

e Reduce irradiation
doses to other parts

2 June 2009

dimensional changes

Local differences in neutron
dose and temperature
induce differential stress in
the graphite

Stresses are relaxed by the
creep strain due to neutron
irradiation (no thermal creep
at operation temps)

These mechanisms are
not well-understood
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Ni-Base Superalloys

Corrosion resistance? Oxidation of a metal by water vapor:
Helium is not XH,0g * Mg = MOy + X/2Hyq
corrosive... Reaction of water vapor with carbon from

an aloy:

H0g + Cg ™ CO + Hyy

H,, H,0, CO, CH,, N,,
and CO, impurities
highly diluted in He

Decomposition of carbon monoxide:
XCOy + My = MO, +XCy

X(s)

Decomposition of methane on ametallic

surface:
Dilution causes single CHag = G+ 2Hag
gas species Interaction Reduction by methane of a metallic oxide:
with metallic materials XCH . + MO,y = XCO ) + 2xHyy + M g
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SiC/SiC

 Want benefits of ceramics without being as
brittle:

e Can be engineered to have pseudo-ductile
and predictable fracture modes

e Continuous fiber reinforcement of SIC/SIC
» More tolerant to mechanical loading and thermal shock.

o SIC/SIC composites are capable of being
used for larger and more complex
components than monolithic silicon carbide
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Exciting Area of Research
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