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Review of Reactor Generations

http://www.ne.anl.gov/images/activ/programs/geniv/picture1.jpg

4 Main Goals
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Generation-IV Types
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Generation-IV Reactor Systems (from ref [11] and [http://www.world-nuclear.org/info/inf77.html])
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Generation-IV Potential

LowMedium/ 
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MediumHighMedium/ 
low

HighCurrent technical feasibility 
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Generation-IV Reactor System Potential(from ref [2])
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Very High Temperature Reactor
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Material Requirements – VHTR
• Dimensional stability under irradiation and high temperatures

• Under stress – irradiation creep or relaxation
• Without stress – swelling or growth

• Mechanical properties must be acceptable after ageing
• 50,000h operation target between major maintenance work compared to 

15,000h for most current gas turbine plants
• Tensile strength
• Ductility
• Creep Resistance
• Fracture toughness
• Resilience (shock)

• Corrosion resistance or chemical compatibility between 
structural materials and the coolant or process fluid
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Current Reactor Materials
• Fuel cladding

• Zirconium alloys:

• Zircaloy-2, -4, and Zr-2.5Nb

• Moderators
• Boron Carbide 
• Ag-In-CD (80-15-5) alloy 
• Gd2O3 with UO2

• Outside the core
• Low alloy ferritic steels

• Stainless Steels (304) http://en.wikipedia.org/wiki/File:Nuclear_fireball.jpg
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VHTR Materials
• Fuel

• Tri-isotropic (TRISO)-layered 
particles

• Pyrolytic carbon
• Silicon carbide
• Porous carbon

• UO2 and UC2

• Moderator, central column, 
radial reflectors, etc

• Graphite
• i.e. H-451 – medium grain, 

near-isotropic, nuclear grade

• Outside the core
• Ni-base Superalloys
• Silicon carbide fiber reinforced 

silicon carbide matrix composites 
(SiC/SiC)

From ref [2]
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TRISO particles
• Pyro-carbon

• Single cleavage planes � good 
thermal conductivity (for 
thermal neutrons)

• Outer layer – structural strength

• Inner layer – retain fission 
gasses

• SiC
• Retain fission gases

• Porous Carbon
• Space for fission gases and CO

• UO2 and UC2

• UC2 can reduce CO pressure

From ref [13]
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Graphite
• Polycrystalline
• High degree of 

graphitization
• High chemical purity

• Minimize thermal neutron 
absorption in the moderator

• Random bulk 
orientation
• Dimensional stability under 

high neutron fluxes

• Reduce irradiation 
doses to other parts

• Issues
• Neutron irradiation induces 

dimensional changes 
• Local differences in neutron 

dose and temperature 
induce differential stress in 
the graphite

• Stresses are relaxed by the 
creep strain due to neutron 
irradiation (no thermal creep 
at operation temps)

• These mechanisms are 
not well-understood
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Ni-Base Superalloys
• Corrosion resistance? 

Helium is not 
corrosive…

• H2, H2O, CO, CH4, N2, 
and CO2 impurities 
highly diluted in He

• Dilution causes single 
gas species interaction 
with metallic materials

Oxidation of a metal by water vapor:
xH2O(g) + M(s) = MOx(s) + x/2H2(g)

Reaction of water vapor with carbon from 
an alloy:

H2O(g) + C(s) → CO(g) + H2(g)

Decomposition of carbon monoxide:
xCO(g) + M(s) → MOx(s) + xC(s)

Decomposition of methane on a metallic 
surface:

CH4(g) = C(s) + 2H2(g)

Reduction by methane of a metallic oxide:
xCH4(g) + MOx(s) → xCO(g) + 2xH2(s) + M(s)
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SiC/SiC
• Want benefits of ceramics without being as 

brittle:
• Can be engineered to have pseudo-ductile 

and predictable fracture modes
• Continuous fiber reinforcement of SiC/SiC

• More tolerant to mechanical loading and thermal shock.

• SiC/SiC composites are capable of being 
used for larger and more complex 
components than monolithic silicon carbide 



2 June 2009 Materials Science and Engineering 395-0 13

Exciting Area of Research
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